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The small-x deep inelastic scattering in the saturation region is gov-
erned by the non-linear evolution of Wilson-line operators. In the leading
logarithmic approximation it is given by the BK equation for the evolution
of color dipoles. In the next-to-leading order the BK equation gets contri-
butions from quark and gluon loops as well as from the tree gluon diagrams
with quadratic and cubic nonlinearities.
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A general feature of high-energy scattering is that a fast particle moves
along its straight-line classical trajectory and the only quantum effect is the
eikonal phase factor acquired along this propagation path. In QCD, for the
fast quark or gluon scattering off some target, this eikonal phase factor is a
Wilson line - the infinite gauge link ordered along the straight line collinear
to particle’s velocity nµ:

Uη(x⊥) = Pexp
{

ig

∫ ∞

−∞
du nµ Aµ(un + x⊥)

}

, (1)

Here Aµ is the gluon field of the target, x⊥ is the transverse position of the
particle which remains unchanged throughout the collision, and the index
η labels the rapidity of the particle (for a review see Ref. [1]).

Let us consider the deep inelastic scattering from a hadron at small xB =
Q2/(2p·q). The virtual photon decomposes into a pair of fast quarks moving
along straight lines separated by some transverse distance. The propagation
of this quark-antiquark pair reduces to the “propagator of the color dipole”
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U(x⊥)U †(y⊥) - two Wilson lines ordered along the direction collinear to
quarks’ velocity. The structure function of a hadron is proportional to a
matrix element of this color dipole operator

Ûη(x⊥, y⊥) = 1 −
1

Nc
Tr{Ûη(x⊥)Û †η(y⊥)} (2)

switched between the target’s states (Nc = 3 for QCD).
The small-x behavior of the structure functions is governed by the rapid-

ity evolution of color dipoles. At relatively high energies and for sufficiently
small dipoles we can use the leading logarithmic approximation (LLA) where
αs ≪ 1, αs lnxB ∼ 1 and get the non-linear BK evolution equation for the
color dipoles [2, 3]:

d

dη
Û(x, y) = (3)

αsNc

2π2

∫

d2z
(x − y)2

(x − z)2(z − y)2
[Û(x, z) + Û(y, z) − Û(x, y) − Û(x, z)Û(z, y)]

The first three terms correspond to the linear BFKL evolution [4] and de-
scribe the parton emission while the last term is responsible for the parton
annihilation. For sufficiently high xB the parton emission balances the par-
ton annihilation so the partons reach the state of saturation[5] with the
characteristic transverse momentum Qs growing with energy 1/xB .

As usual, to get the region of application of the leading-order evolution
equation one needs to find the next-to-leading order (NLO) corrections. In
the case of the small-x evolution equation (3) there is another reason why
NLO corrections are important. Unlike the DGLAP evolution, the argument
of the coupling constant in Eq. (3) is left undetermined in the LLA, and
usually it is set by hand to be Qs. The precise form of the argument of αs

should come from the solution of the BK equation with the running coupling
constant, and the starting point of the analysis of the argument of αs in Eq.
(3) is the calculation of the NLO evolution.

Let us present our result for the NLO evolution of the color dipole [6] (the
quark part was calculated in [7, 8]). Hereafter we use notations X ≡ x− z,
X ′ ≡ x − z′, Y ≡ y − z, and Y ′ ≡ y − z′.

d

dη
Tr{ÛxÛ †

y} =
αs

2π2

∫

d2z
(x − y)2

X2Y 2

{

1 + (4)

αs

4π

[

b ln(x − y)2µ2 − b
X2 − Y 2

(x − y)2
ln

X2

Y 2
+ (

67

9
−

π2

3
)Nc −

10

9
nf

− 2Nc ln
X2

(x − y)2
ln

Y 2

(x − y)2

]}

[Tr{ÛxÛ †
z}Tr{ÛzÛ

†
y} − NcTr{ÛxÛ †

y}]
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+
α2

s

8π4

∫

d2zd2z′
[

(

−
2

(z − z′)4
+

{X2Y ′2 + X ′2Y 2 − 4(x − y)2(z − z′)2

(z − z′)4[X2Y ′2 − X ′2Y 2]

+
(x − y)4

[X2Y ′2 − X ′2Y 2]X2Y ′2
+

(x − y)2

(z − z′)2
1

X2Y ′2

}

ln
X2Y ′2

X ′2Y 2

)

× [Tr{ÛxÛ †
z}Tr{ÛzÛ

†
z′}Tr{Ûz′Û

†
y} − Tr{ÛxÛ †

z Ûz′U
†
y ÛzÛ

†
z′} − (z′ → z)]

+ 4nf

{ 2

(z − z′)4
−

X ′2Y 2 + Y ′2X2 − (x − y)2(z − z′)2

(z − z′)4(X2Y ′2 − X ′2Y 2)
ln

X2Y ′2

X ′2Y 2

}

× Tr{taÛxtbÛ †
y}[Tr{taÛzt

bÛ †
z′} − (z′ → z)]

]

Here µ is the normalization point in the MS scheme and b = 11
3 Nc −

2
3nf is the first coefficient of the β-function. The NLO kernel is a sum of
the running-coupling part (proportional to b), the non-conformal double-log

term ∼ ln (x−y)2

(x−z)2
ln (x−y)2

(x−z)2
and the three conformal terms which depend on

the two four-point conformal ratios X2Y ′2

X′2Y 2
and (x−y)2(z−z′)2

X2Y ′2
. The (almost)

conformal kernel (4) was obtained with the “rigid” rapidity cutoff

Uη
x = Pexp

[

ig

∫ ∞

−∞
du pµ

1Aη
µ(up1 + x⊥)

]

Aη
µ(x) =

∫

d4kθ(eη − |αk|)e
−ik·xAµ(k) (5)

The result for the NLO kernel with the “smooth” cutoff (1) is more com-
plicated and non-conformal so it appears that the color dipoles should be
regularized as in Eq. (5).

It should be emphasized that the NLO result itself does not lead au-
tomatically to the argument of coupling constant αs in Eq. 3. In order
to get this argument one can use the renormalon-based approach: first get
the quark part of the running coupling constant coming from the bubble
chain of quark loops and then make a conjecture that the gluon part of the
β-function will follow that pattern. The Eq. (4) proves this conjecture in
the first nontrivial order: the quark part of the β - function 2

3nf calculated
earlier gets promoted to full b. The analysis of the argument of the coupling
constant was performed in Ref. [7, 8, 9] and the result is

d

dη
Tr{ÛxÛ †

y} ≃
αs((x − y)2)

2π2

∫

d2z [Tr{ÛxÛ †
z}Tr{ÛzÛ

†
y} − NcTr{ÛxÛ †

y}]

×
[ (x − y)2

X2Y 2
+

1

X2

(αs(X
2)

αs(Y 2)
− 1

)

+
1

Y 2

(αs(Y
2)

αs(X2)
− 1

)]

+ ... (6)
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It is easy to see that the argument of αs is determined by the size of the
smallest dipole min(|x − y|, |x − z|, |y − z|).

Our result (4) agrees with the forward NLO BFKL kernel [10] up to
a term proportional α2

sζ(3) times the original dipole. We think that the
difference could be due to different definitions of the cutoff in the longitu-
dinal momenta. There is no any obvious preferred definition of the cutoff
in the longitudinal momenta so it can be chosen in any way convenient for
practical calculations of higher orders. It is worth noting that all cutoffs
should give the same αs correction to the intercept of the BFKL pomeron
determined by the rightmost singularity in the complex ω plane. Our goal
was to study the dipole amplitudes with the cutoff closely related to the
the small-x asymptotics of the anomalous dimensions of twist-2 gluon op-
erator and therefore we imposed the cutoff (5). It would be instructive to
get the j → 1 asymptotics of the anomalous dimensions of gluon operators
directly from Eq. (4), without a Fourier transformation of our result to the
momentum space and comparing to NLO BFKL as it is done in Ref. [6].
The study is in progress.
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